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Motor Unit Sampling From Intramuscular
Micro-Electrode Array Recordings
Agnese Grison , Jaime Ibáñez Pereda , and Dario Farina , Fellow, IEEE

Abstract— Recordings of electrical activity from mus-
cles allow us to identify the activity of pools of spinal
motor neurons that send the neural drive for muscle acti-
vation. Decoding motor unit and motor neuron activity
from muscle recordings can be performed by high-density
(HD) electrode systems, both non-invasively (surface, HD-
sEMG) and invasively (intramuscular, HD-iEMG). HD-sEMG
recordings are obtained by grids placed on the skin surface
while HD-iEMG signals can be acquired by micro-electrode
arrays. While it has been shown that HD-iEMG allows the
accurate decoding of a larger number of motor units when
compared to HD-sEMG, the dependence of motor unit yield
on the parameters of the micro-electrode arrays is still
unexplored. Here, we used recently developed HD-iEMG
electrodes to record from hundreds of recording sites
within the muscle. This allowed us to investigate the impact
of electrode number, inter-electrode distance, and the num-
ber of muscle insertions on the ability to sample motor
units within the muscle. Specifically, we recorded both
HD-sEMG and HD-iEMG from the Tibialis Anterior muscle
of two healthy subjects at various contraction intensities
(10%, 30%, and 70% of maximum voluntary contraction,
MVC). For the first time, we present intramuscular record-
ings with more than 140 electrodes inside a single muscle,
achieved through multiple implants of high-density micro-
electrode arrays. Through systematic offline analyses of
these recordings, we tested different electrode configura-
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tions to identify optimal setups for accurately capturing
motor unit activity. The results revealed that the density of
electrodes in the micro-electrode arrays is the most critical
factor for maximising the number of identified motor units
and ensuring very high accuracy. Comparisons between
intramuscular and surface recordings also confirmed that
HD-iEMG consistently captures larger and more stable
numbers of motor units across subjects and contraction
levels. These results underscore the potential of HD-iEMG
as a powerful tool for both clinical and research settings,
particularly when precise motor unit decomposition is
crucial.

Index Terms— EMG, high-density, intramuscular, motor
units.

I. INTRODUCTION

RAPID advancements in neural interface technologies are
fostering the development of innovative systems capable

of restoring sensory, communicative, and control capabilities
for individuals with impairments. These technologies enable
interactions between the nervous system and external devices.

Myoneural interfaces utilising electromyography (EMG)
to interface muscles offer a reliable and accessible means
to capture motor commands issued by the central nervous
system [1], [2]. By interfacing directly at the muscle level,
these systems access the motor units, comprising spinal motor
neurons and their innervated muscle fibers. The activity of
motor units has been extensively studied over the past decades
using intramuscular needles or wire electrode recordings [3],
[4], [5].

To overcome the limited motor unit sampling offered by
traditional needle or wire electrodes, high-density surface
EMG (HD-sEMG) has been shown to enable the decoding
of a significantly larger number of motor units [6], [7].
This has paved the way for the development of high-density
intramuscular EMG (HD-iEMG) technologies [8], [9], which
combine the selectivity of traditional intramuscular EMG
with the extensive spatial sampling of high-density surface
recordings. Indeed, HD-iEMG overcomes several limitations
of traditional non-invasive muscle recordings to decompose
motor neuron activity, such as the filtering effects of the
volume conductor, sensitivity to electrode positioning [10],
amplitude cancellation [11], and cross-talk [12], which often
lead to reduced accuracy in estimating the neural drive to
muscle. By providing greater spatial sampling and access
to a larger pool of motor neurons, HD-iEMG enables a
more precise and direct measurement of muscle activity. This
advancement facilitates enhanced analysis of the multiple
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neural inputs that the motor neurons receive from different
regions of the nervous system, offering a deeper understanding
of the neural information underlying volitional motor control.

Recent advancements in intramuscular electrode technology
have enabled EMG recordings with highly dense configura-
tions [4], [8], allowing multi-channel recordings from dozens
of detection sites within the muscle. Current HD-iEMG
electrode designs have largely been informed by theoretical
models, with limited empirical studies investigating the critical
factors for optimal configuration in extracting motor unit
information. As a result, the critical design parameters that
maximise the ability of HD-iEMG to decode the neural signals
driving muscle activity remain insufficiently explored.

In this study, we conducted experiments using newly devel-
oped HD-iEMG electrodes [4] to record muscle activity from
the Tibialis Anterior muscle of two healthy participants at
10%, 30%, and 70% of the maximum voluntary contraction
(MVC) during ankle dorsiflexion. We simulated different elec-
trode configurations offline by selecting subsets of electrodes
and analysing the number of decomposed units and the quality
of the decomposition as outcome measures. This approach
allowed us to evaluate the impact of key parameters, such
as inter-electrode distance (IED), the number of recording
sites, and the use of multiple HD-iEMG micro-electrode
arrays within the same muscle, to maximise the decomposition
potential of HD-iEMG.

In summary, this study made the following contributions:
1) We conducted, for the first time, intramuscular record-

ings with over 140 recording sites from a single muscle,
marking the first instance of truly HD-iEMG;

2) We directly compared surface and intramuscular record-
ings from the same individuals under identical experi-
mental conditions, assessing their respective capabilities
in identifying motor unit populations;

3) We analysed the relative importance of inter-electrode
distance and number of recording sites on motor unit
sampling in intramuscular EMG.

II. METHODS

A. EMG Model and Decomposition
A key challenge in EMG signal analysis is the deconvolu-

tion of the composite signals to isolate individual motor unit
action potentials (MUAPs) and their firing sequences [13].
Mathematically, the EMG signal can be described by the
following model:

x(t) =

L−1∑
l=0

H(l)s(t − l) + ξ(t) (1)

Here, x(t) = [x1(t), x2(t), . . . , xM (t)]T denotes the vector
of M observed EMG signals, s(t) = [s1(t), s2(t), . . . , sN (t)]T

represents the N motor unit spike trains generating the EMG
signals, and ξ(t) is the additive noise. The matrix H(l), with
dimensions M × N , contains the l th sample of the MUAPs for
the nth motor unit and the mth EMG channel.

This convolutional model is identical for HD-sEMG and
HD-iEMG signals. The difference between the two recordings
is the matrix H that defines the volume conductor. Therefore,

the solution of the deconvolution problem is the same for the
two recording modalities.

The convolutional model can be reformulated as an instanta-
neous mixture of an augmented vector of sources, comprising
the N sources and their delayed versions. The extension factor
L for the sources corresponds to the duration of the impulse
response of the filter representing the volume conductor. The
observations are also extended by R delayed versions in order
to keep the ratio between the number of observations and
the number of sources as high as possible. The instantaneous
model can be written as:

x̃(t) = H̃s̃(t) + ξ̃(t) (2)

where

s̃(t) =
[
s̃1(t), s̃2(t), . . . , s̃ j (t), . . . , s̃N (t)

]T

s̃ j (t) =
[
s j (t), s j (t − 1), . . . , s j (t − (L + R + 1))

]
(3)

and H̃ is constructed from the extended convolution kernels
h̃. The observed signal x̃(t) is:

x̃(t) =
[
x̃1(t), x̃2(t), . . . , x̃i (t), . . . , x̃M (t)

]T

x̃i (t) = [xi (t), xi (t − 1), . . . , xi (t − R)] (4)

The task then becomes determining the individual sources
from the mixed signal.

Decomposition strategies for HD-EMG signals can be
broadly categorised based on whether they utilise classic
spike sorting methods (template matching) or blind source
separation (BSS). Template matching approaches correlate the
observed MUAP waveforms with predefined templates [14].
While effective under low-force conditions, these methods
face challenges at medium to high-force levels [15] due to
the increased recruitment of motor units. A large number of
active motor units determines a high probability of MUAP
superimpositions over time, making it difficult to separate
individual MUAPs [14].

In contrast, BSS techniques, such as the convolution ker-
nel compensation (CKC) [16] and its variants [17], [18],
rely solely on the statistical properties of the motor unit
discharge patterns for decomposition, ignoring filter kernel
information [19]. These methods estimate the cross-correlation
vector csn ,x̃ = E(sn(t)x̃(t)) between the discharge pattern of
the nth motor unit and the observations, where E(.) denotes
mathematical expectation [18]. An empirically selected cost
function is applied to each sample of the estimated discharge
pattern ŝn(t). The estimate ĉsn ,x̃ is iteratively updated using
the following gradient-based rule [18]:

ĉs̃n ,x̃ = ĉs̃n ,x̃ + η(k)
1
T

∑
n

∂ F( ˆ̃sn(t))
∂ ĉs̃n ,x̃

ĉs̃n ,x̃ =
ĉs̃n ,x̃

∥ĉs̃n ,x̃∥

where η(k) is the adaptive learning rate at iteration k.
Initially developed for HD-sEMG signal decomposition,

these methods utilise cost functions F , such as F(s̃) = 2 ·

atan(s̃)−2·s̃+s̃ ·log(1+s̃2), to maximise source independence
(or sparseness) while being robust to outliers [20].
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Initially, BSS methods were developed and applied to
HD-sEMG, as these techniques require a large number of
recording channels. However, the advancement of HD-iEMG
technologies has now enabled the use of BSS for intra-
muscular recordings as well. Recently, a novel BSS-based
algorithm, Swarm-Contrastive Decomposition (SCD), was pro-
posed specifically for HD-iEMG [21]. SCD utilises a particle
swarm optimisation approach to adaptively traverse a polyno-
mial family of nonlinearities. These nonlinearities are designed
to approximate the asymmetric cumulants of the sources,
which are statistical measures capturing the asymmetry and
higher-order dependencies in the data.

The key innovation of SCD lies in its ability to tailor the
nonlinearity to each source individually, allowing it to adapt
more precisely to the characteristics of the data. By doing
so, SCD can search the solution space more efficiently and
effectively. It can also leverage data points that would typically
be considered outliers, turning them into useful information for
the decomposition process.

SCD has demonstrated superior accuracy and performance
compared to other convolutive BSS techniques, for HD-iEMG
data. In some instances, it has even surpassed the accuracy of
manual decomposition methods, considered the gold standard
in many applications [21]. Given these advantages, in this
study we employed SCD for the signal decomposition of
HD-iEMG data. For the decomposition of HD-sEMG data,
we used the more commonly applied Convolutive Blind Source
Separation (cBSS) technique [20]. In this way, we utilised
the best algorithm for each type of data, acknowledging that
SCD has not yet been validated for HD-sEMG data, hence our
choice to use the validated cBSS method.

B. Data
The HD-iEMG signals were recorded using multi-channel

micro-electrode arrays designed for acute recordings [4], [8].
Each micro-electrode array comprised 40 platinum detection
points (140 µm × 40 µm) arranged in two linear arrays of
20 electrodes each, spaced by 1 mm. The two sides of the
filament were shifted by 0.5 mm, resulting in a linear array
with a 0.5 mm inter-electrode distance [4].

The HD-iEMG and HD-sEMG signals were recorded using
a multi-channel amplifier (OT-Bioelettronica, Torino, Italy),
sampled at 10,240 Hz, high-pass filtered at 10 Hz, and analog-
to-digital converted with 16-bit resolution. The EMG signals
were acquired in a monopolar derivation configuration, with a
reference electrode placed on the ankle.

All experimental procedures adhered to the ethical guide-
lines set by Imperial College London (ICREC Project ID
19IC5640) and were performed in accordance with the Dec-
laration of Helsinki, with informed consent obtained from all
participants prior to each experiment.

Experiments were performed on the Tibialis Anterior mus-
cle of two healthy men, aged 30 and 39 years. The participants
had no history of neurological or musculoskeletal disorders.
Although the sample size was small, the complexity of the
recordings, involving multiple insertions into the same muscle,
limited the feasibility of including a larger subject pool. Three
intramuscular micro-electrode arrays were inserted into the

TA of Subject 1 (S1), and four intramuscular micro-electrode
arrays were inserted into the TA of Subject 2 (S2), approxi-
mately 3 cm apart in the longitudinal direction. An additional
HD-iEMG array was inserted in the TA of S2 because of
poor recording quality of one of the previously inserted arrays
that had nearly half of the recording sites outside the muscle.
Following insertion, subjects were asked about any discomfort
caused by the HD-iEMG arrays at rest and during muscle
contractions, and they reported none. Two 64-channel surface
grids (4 mm IED, 13 × 5 configuration) were placed on the
belly of the muscle, next to the intramuscular insertions for
both subjects. Subjects were seated with their right leg and
foot constrained to a dynamometer and instructed to sustain
an isometric ankle dorsiflexion during all experiments. The
participants completed an MVC trial after the insertion of the
intramuscular electrodes, which helped secure the electrodes
and provided a reference for measuring relative forces. The
relative forces were determined as percentages of the MVC,
with visual feedback provided to the subjects regarding the
exerted force and target. The subjects performed trapezoidal
contractions at 10, 30, and 70 %MVC ramping up and down at
a rate of 10 %MVC/s. The force was sustained for 20 seconds
at 10% and 30 %MVC, and for 10 seconds at 70 %MVC.
These force levels were selected to encompass a range from
low to medium to high intensity muscle contractions. The
isometric portion of the contractions, corresponding to the
plateau phase, was used for the decomposition to adhere to
the stationary assumption of the model. All results are reported
based on the isometric segments of the recordings, except for
the recruitment threshold analysis. For this analysis, the sep-
aration filters of the decomposed motor units were reapplied
to the entire contraction to track the motor units during the
ramp [22]. After tracking, the discharge rates of each motor
unit were recomputed during the plateau phase of the recording
and utilized for the recruitment threshold analysis. Outliers,
defined as values falling outside the interquartile range, were
excluded as no manual cleaning was performed after tracking.
The recruitment threshold was determined as the force level
at which each motor unit began to fire regularly.

Figure 1 shows the setup of the electrodes for S1 (i) and
for S2 (ii).

C. Experiments
Experiments were conducted to isolate specific variables

and evaluate their impact on the yield and accuracy of motor
unit identification from HD-iEMG recordings. Additionally,
the yield and accuracy of decomposition from concurrently
recorded HD-sEMG recordings are presented to provide a
comparative analysis between the two types of recordings. The
accuracy in decomposition was evaluated with the silhouette
(SIL) measure, as defined in [20]. This metric is linearly
associated to the accuracy with which the series of motor
unit discharge times is estimated. To compare the accu-
racy of decomposition between HD-iEMG and HD-sEMG,
we selected the top v units with the highest accuracy from
the full set of HD-iEMG signals (i.e., 112 channels for S1
and 142 for S2), where v represents the number of units
decomposed from the corresponding HD-sEMG. For example,
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Fig. 1. Schematic representation of the experimental setup. HD-iEMG
and HD-sEMG signals (2 grids, 64 channels with 4 mm IED) were
concurrently recorded while participants were seated in a chair and
were producing ankle dorsiflexions. i Three HD-iEMG electrodes were
inserted in the TA of S1. ii Four HD-iEMG electrodes were inserted in
the TA of S2. Created with BioRender.com.

if the HD-sEMG decomposed 11 units at 10 %MVC for S1,
we selected the top 11 units from the HD-iEMG decomposi-
tion and compared the distributions of the SILs.

For all subsequent analyses, channels that presented flat
signal profiles or baseline noise exceeding three standard
deviations the mean noise level were excluded from the
study. Notably, approximately 15 channels from the third
micro-electrode array in S2 were identified as external to the
target muscle area. Consequently, the effective channel count
was adjusted to 112 from an initial 120 for S1, and 142 from
an initial 160 for S2. For the HD-sEMG analyses, 2 channels
from S1 and 17 channels from S2 were excluded.

1) Data Analysis 1: This analysis aimed to study the accu-
racy and the number of decomposed motor units based on
different numbers of available channels and their locations
within the muscle. A subset of channels, denoted as p, was
subjected to combinatorial assessment. Permutations were

derived from the binomial coefficient
(

p
q

)
for each of q =

1, 2, 3, .., p. This means that for each value of q , different
combinations of q channels were selected from the total p
channels. This process was repeated k = 100 times for each
value of q to ensure robustness and reliability of the results.
For subject S1, p = 112, and for subject S2, p = 142.
Figure 2 a illustrates one such configuration for q = 62.
This analysis was performed for all force levels (10, 30,
70 %MVC). Because the channels were always selected within
the same micro-electrode arrays, changing the number of chan-
nels also corresponded to changing the density of electrodes.

2) Data Analysis 2: This analysis assessed the number of
decomposed motor units by subsampling the channels for
each electrode maintaining a fixed IED. Six configurations
were tested per electrode. The electrode with 15 channels
outside the muscle in S2 was excluded from this analysis. The
configurations were as follows: IED 1 mm (i, iv), IED 2 mm

Fig. 2. The electrode array configurations considered in this study.
a Schematic of electrode. b Representative example of the configuration
for number of channels q = 62, and random selection k = 1. c Per
electrode channel subsampling keeping a fixed IED. In detail: IED 1mm
(i, iv), IED 2mm (ii, v), IED 4mm (iii, vi). d Schematic representation of
the random subsampling implemented per electrode.

(ii, v), IED 4 mm (iii, vi), as illustrated in Figure 2 c. Channels
identified as flat or noisy in Experiment 1 were also excluded
from this analysis. This occasionally resulted in fewer channels
than the expected theoretical number.

To evaluate whether a stochastic selection of channels could
yield comparable results to a systematic channel reduction,
we compared these results with random subsampling of the
channels. This analysis was conducted separately for each
array, selecting k permutations based on the minimum number
of available channels across all electrodes. This resulted in
k=35 for S1, and k=36 for S2. Due to computational con-
straints, this analysis was performed only for 30 %MVC.

D. Hyperparameters
The decomposition process was executed on an AMD Rome

processor paired with an Nvidia RTX 6000 GPU. In all
experiments, only the selected channel configurations were
varied. Signals were filtered with a high-pass filter with a
cutoff frequency of 10 Hz. The low-pass filter cutoff was
set at 4400 Hz for HD-iEMG and 500 Hz for HD-sEMG.
Decompositions were conducted exclusively during isometric
contractions, with the number of iterations capped at 250. For
SCD applied to HD-iEMG, an extension factor of 20 was
applied to the observations. The decomposition process was
terminated if no new acceptable sources were identified for
20 consecutive iterations. For HD-sEMG decomposition, all
parameters were chosen as specified in [20].

For all decompositions, the SIL cutoff was set at 0.85.
In postprocessing, only units with a coefficient of variation
of the interspike interval below 40% and firing rates lower
than 30 Hz were retained for further analysis.

The level of agreement between the activities of motor units
decoded from the surface and intramuscular recordings was
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Fig. 3. Distribution of motor unit discharge rates (Hz) measured at
three force levels (10%, 30%, and 70 %MVC) in two subjects (S1 and
S2). The data combines measurements from two recording techniques:
HD-iEMG (represented by boxplots with overlaid density plots in blue,
orange, and green) and HD-sEMG (shown as black circles). The figure
demonstrates how discharge rates generally increase with force level,
with wider distributions observed at higher force levels. Each data point
represents an individual motor unit’s discharge rate, with the vertical axis
showing rates from approximately 0-25 Hz.

assessed using the Rate of Agreement (RoA). The RoA mea-
sures the fraction of commonly identified discharges relative
to the total number of discharges, considering both common
and not common firings. The RoA was therefore calculated as
follows:

RoA =
T P

T P + F P1 + F P2

In this equation, T P refers to the number of matched
predicted activations within a deviation margin of ±0.5 ms.
F P1 and F P2 represent the counts of unmatched predicted
activations, corresponding to firings present in only one of the
two sets.

III. RESULTS

A. Characterization of the Decomposed Motor Units
The number of motor units decomposed using HD-iEMG

across the three force levels and the two subjects ranged
between 24 and 53. With the HD-sEMG signals, the number of
units decomposed was between 3 and 19. Table I summarizes
the number of decomposed motor units from the maximum
number of available channels per subject and contraction level.
The distribution of discharge rates of all decomposed motor
units is presented in Figure 3. Boxplots and density plots
depict the distributions of motor units from HD-iEMG signals,
while black circles indicate the values for the HD-sEMG
signals. The discharge rates showed a consistent increase with
force levels (Fig. 3 a), which is an expected outcome reflect-
ing the physiological relationship between force production
and neural drive. The values of the HD-sEMG closely align
with the distributions of the HD-iEMG units, showing that
similar information was extracted with both methods. Figure 4
shows the relationship between the recruitment threshold and
the discharge rates. As expected, the firing rates increased
relative to the excitatory input [23].

Fig. 4. Recruitment thresholds and motor unit discharge rates across
the three force levels and the two subjects, and compared between
motor units decomposed from the HD-iEMG and HD-sEMG signals.
Relationship between motor unit recruitment thresholds (%MVC) and
discharge rates (Hz) at three force levels (10%, 30%, and 70 %MVC)
for two subjects (S1 and S2). Data are shown separately for intra-
muscular recordings (HD-iEMG, left panels) and surface recordings
(HD-sEMG, right panels). Linear regression lines with 95% confidence
intervals (shaded areas) demonstrate the negative correlation between
recruitment threshold and discharge rate, particularly visible in the
intramuscular recordings. Different force levels are color-coded (blue:
10%MVC, orange: 30%MVC, green: 70%MVC), showing distinct clus-
ters of motor unit behaviour.

Additionally, Table I reports the number of matched units
between the HD-iEMG and the HD-sEMG, and the RoA
between them. This analysis provides a conservative estimate
of the decomposition accuracy for the two recording types.
Indeed, the RoA considers the total number of decomposition
errors from the two methods. Importantly, we could find
matched units between surface and intramuscular recordings
in both subjects and at all contraction levels, with very high
RoA, which provides a strong validation of the decomposition
carried out with the two types of signals [20], [24]. The median
SIL value of the matched units between the HD-iEMG and
HD-sEMG signals was 0.94 (interquartile range: 0.93-0.97) for
the HD-iEMG signals and 0.95 (interquartile range: 0.93-0.97)
for the HD-sEMG signals. The slightly higher median SIL for
HD-sEMG units likely reflects the fact that the matched units
are predominantly superficial and so farther from the intramus-
cular electrodes, making them more difficult to decompose in
HD-iEMG recordings.

B. Number of Decomposed Motor Units as a Function of
the Number of Channels

Figure 5 illustrates an example of concurrently recorded
signals at 70 %MVC for S1. Panel a shows the HD-iEMG sig-
nals and panel c shows the HD-sEMG signals. The respective
raster plots are presented in panels b (HD-iEMG) and d (HD-
sEMG). The intramuscular signals provide higher spatial
specificity, with individual action potentials typically being
detectable across 6-8 channels. As a consequence, HD-iEMG
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TABLE I
NUMBER OF DECOMPOSED MOTOR UNITS FROM THE HD-IEMG AND

THE HD-SEMG SIGNALS FOR S1 AND S2 AT DIFFERENT FORCE

LEVELS. FOR EACH SUBJECT AND FORCE LEVEL, THE NUMBER OF

COMMON MOTOR UNITS BETWEEN THE HD-IEMG AND THE

HD-SEMG, TOGETHER WITH THE RANGE OF THEIR

ROA, ARE PROVIDED

allowed a decomposition of a larger set of units than HD-
sEMG (52 units vs 19 in this example).

Figure 6 displays the number of motor units decomposed
as a function of the number of channels used. Results are
presented separately for each subject and force level. Each
data point represents the yield from a permutation of a channel
subset (Fig. 2 b). The figure displays the relationship between
the number of random channels and the number of identified
motor units at 10 (blue), 30 (orange), and 70 %MVC (green).
Each point on the graph represents one of the 100 permutations
for each channel count. The solid lines on the graph indicate
the average yield for a given channel count. The range of
motor units decoded across different channel permutations was
relatively broad. For example, in subject S1, using 80 channels,
the number of decoded motor units varied between approx-
imately 40 and 60. This substantial variation suggests that
the precise location of the recording channels influences the
decomposition yield, though it is not possible to determine the
optimal placement of each recording site a priori.

The dashed lines in Fig. 6 represent the yield of motor units
decomposed by HD-sEMG decomposition. The number of
units is projected on the channel axis for HD-iEMG to indicate
the number of channels needed on average by intramuscular
recordings to match the motor unit yield of HD-sEMG based
on 126 (S1) and 111 (S2) channels. Overall, HD-iEMG
allowed the decomposition of a relatively large number of
motor units across subjects. Notably, a strong reduction in
units decomposed was observed when HD-sEMG data was
used. For both subjects, decomposition of large sets of motor
units (always above 20) was successfully achieved for all force
levels using HD-iEMG.

C. Accuracy of Decomposition as a Function of the
Number of Channels

Figure 7 a displays the mean SIL value of the motor units
decomposed from each permutation run, for the HD-iEMG.
As expected, SIL levels were generally higher at lower force
levels [25] and for greater number of channels. The variability
in SIL was greater with fewer channels, which is expected

TABLE II
NUMBER OF MOTOR UNITS DECOMPOSED FROM THE ELECTRODE

CONFIGURATIONS PRESENTED IN FIG. 2 C, AVERAGED ACROSS IEDS

because fewer channels provide less information about each
motor unit, making the decomposition process less reliable.
In contrast, more channels provide a more robust filter, leading
to a more accurate decomposition, as the same unit is observed
across multiple channels. The SIL values began to plateau
at around 80 channels for both subjects, suggesting that
approximately 80 channels are necessary to achieve consistent
and stable accuracy in decomposition.

The decomposition quality was generally high, with SIL
levels above the commonly used threshold value of 0.9.
Figure 7 b presents the distribution of the SIL values when
comparing the accuracy of decomposition between surface and
intramuscular recordings. In all cases, the SIL values for the
HD-iEMG were higher than those from the HD-sEMG, and
the difference increased with increasing contraction force.

D. Number of Motor Units and Accuracy of
Decomposition as a Function of Channel Selection

Table II reports the mean and standard deviation of the
number of motor units decomposed from the electrode config-
urations with fixed IED (refer to Fig. 2 c). The yields exhibited
a negative correlation with IED, with a more marked impact of
the number of motor units for higher contraction levels (only
1.8 motor units were decomposed at 70 %MVC level with
4 mm IED for S1, and no motor units were decomposed at
that level for S2).

Figure 8 and Figure 9 present two key analyses at
30 %MVC. Figure 8 shows the mean and standard deviation
of the number of decomposed motor units, while Figure 9
displays the mean and standard deviation of the SIL values
for those units. These results were obtained from various
random subsampling configurations (refer to Fig. 2 d). The
data are organised by electrode, with channels divided into
three subsets of 40 channels each. In addition, scatter points
in the figures represent the mean yield (Fig. 8) and mean
SIL (Fig. 9) for the fixed IED configuration. The analysis
reveals a clear trend: as the number of channels increases,
the number of decomposed motor units increases, and the
SIL values generally improve. The SIL values show greater
variability when fewer than 10 channels are used, consistent
with the findings from Figure 7 a. Importantly, the number of
motor units decomposed and their SIL values in the fixed IED
configuration closely follow the trend observed in the random
subsampling data, indicating that the number of channels,
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Fig. 5. Example data and respective raster plots. a HD-iEMG (40 channels, 10 seconds), with a 150 ms zoom-in on the data b Raster plot from the
HD-iEMG (120 channels) c HD-sEMG (64 channels, 10 seconds), with a 150 ms seconds zoom-in on the data d Raster plot from the HD-sEMG
(192 channels).

Fig. 6. Effect of the number of random channels (a) on the number
of identified motor units at 10, 30, and 70 %MVC for S1 (top) and
S2 (bottom) (b). Each point represents one of the 100 permutations
for each channel count. The solid line indicates the mean yield of
these permutations. Horizontal dashed lines show the motor unit yield
from HD-sEMG decomposition, while vertical dashed lines denote the
number of intramuscular channels needed to achieve the same yields.

rather than their specific location in the muscle, is the primary
factor driving decomposition performance. Note that this does
not mean that all channel selections will lead to very similar

Fig. 7. Effect of channel number on the accuracy of decomposition.
a Mean SIL value of each permutation run for the HD-iEMG, for the
three force levels (10, 30, 70 %MVC) and the two subjects (S1, S2).
b Distribution of SIL values for the intramuscular and surface EMGs,
and for the three force levels (10, 30, 70 %MVC).

number of decoded motor units. As commented in relation
to Figure 6, there is a large variability of number of decoded
motor units across permutations. Yet, on average, choosing
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Fig. 8. Effect of the channel location on the number of decomposed
motor units for each channel configuration. Results are reported for
S1 and S2 at 30 %MVC, per electrode. The solid line indicates the
average number of motor units decomposed from the random selection
of channels. The shaded area represents the standard deviation. The
scatter points represent the number of motor units decomposed from
the fixed IED configurations.

the channels randomly along the micro-electrode array led to
similar results. Since it is not possible to determine the channel
position along the array that leads to the best performance
a priori, maximising the number of channels, rather than
optimising their locations, has the largest effect on the number
of decoded units.

The number of common units identified across the intra-
muscular micro-electrode array electrodes and their RoA is
presented in Figure 10. The common units are low for S1
across electrodes. For S2, the numbers are generally low,
except for 30 %MVC, where 18 units are shared between
the first and second electrodes, and another set of 18 units
is shared between the second and third electrodes.

IV. DISCUSSION

This study systematically investigated the impact of param-
eters of HD-iEMG micro-electrode arrays on the number of
identified motor units and the accuracy of their decomposition.
This is the first study to record muscle activities using >140
electrode sites inside the muscle simultaneously.

The analysis of motor units extracted from both HD-iEMG
and HD-sEMG recordings demonstrated physiologically con-
sistent discharge rates (Fig. 3). The discharge rate distribution
for the motor units identified with HD-sEMG was similar
to that for motor units decomposed from HD-iEMG, partic-
ularly for subject S1. Therefore, despite the lower yield of

Fig. 9. Effect of the channel location on the mean SIL for each
channel configuration. Results are reported for S1 and S2 at 30 %MVC,
per electrode. The solid line indicates the average SIL of the units
decomposed from the random selection of channels. The shaded area
represents the standard deviation. The scatter points represent the
mean SIL decomposed from the fixed IED configurations.

Fig. 10. Counts of common motor units across intramuscular electrodes
for S1 and S2, and the three force levels. The error bars indicate the RoA
(mean and std) between the common units.

decomposed units from HD-sEMG, the extracted population
appeared to be representative of the broader motor unit pool.
The motor units derived from the HD-iEMG showed the
expected inverse relationship between recruitment threshold
and discharge rate, with earlier-recruited units exhibiting
higher firing frequencies compared to later-recruited units [23].
The recruitment pattern of the HD-iEMG motor units revealed
predominantly uniform unit recruitment throughout the con-
tractions, with the exception of 70 %MVC in subject S2,
where early-recruited units were underrepresented in the
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decomposition. This likely occurred because smaller action
potentials from early-recruited units were masked by larger
action potentials from later-recruited units. For subject S1,
the recruitment-discharge rate relationship remained consistent
between HD-iEMG and HD-sEMG recordings. However, the
limited number of decomposed units from the HD-sEMG
decomposed from subject S2 precluded meaningful analysis
on the recruitment pattern.

Our findings show that increasing the number of channels
results in the identification of a greater number of motor units,
consistent with previous analogous research conducted with
surface electrodes [26]. The result is not obvious since the
channels were always selected within the same micro-electrode
array and thus always covered the same portion of muscle
section. Therefore, the only variable analysed was electrode
density rather than different areas of muscle investigated. The
increase in number of detected units with increasing number
of channels may be partly due to the sampling of motor
units with more channels but more likely it was determined
by a better identification of separation filters with a greater
electrode density.

Furthermore, we examined whether the selection of channel
locations, given a fixed density, is critical for motor unit
decomposition. The results indicated that the yields and accu-
racy from random channel subsampling closely matched those
from fixed IED configurations on average. This indicates that
the accuracy is not significantly impacted by whether the
channels are selected randomly or arranged in a closely spaced
configuration, as long as they are selected from the same array.
This confirms that the density of channels is the most critical
factor when optimising for the yield of MUs. Moreover, given
the lack of convergence in the observed trends, using larger
sets of channels with even shorter IEDs than in this study (i.e.,
<0.5 mm) could potentially lead to even better performance.

We also compared the results between HD-sEMG grids
and HD-iEMG. The number of motor units decomposed from
HD-sEMG was considerably lower than from HD-iEMG.
Additionally, the results (in terms of yield and SIL) were
variable across subjects at the surface level, while they were
more consistent at the intramuscular level. Similar number of
motor units were obtained with the two subjects in all condi-
tions with HD-iEMG, indicating lower intra-subject variability
compared to HD-sEMG. This higher variability in HD-sEMG
is likely due to its greater sensitivity to subject-specific factors,
such as volume conduction effects and electrode shifts [27],
[28], [29]. The accuracy of decomposition was also lower in
the HD-sEMG setting compared to the HD-iEMG (Fig. 7).
This can be attributed to the superior quality of HD-iEMG
recordings, which, due to their spatial selectivity, can record
units in 6-8 channels. Intramuscular recordings thus result in
a much greater temporal and spatial sparseness than surface
recordings, and this is a significant factor in determining
differences between the two methods.

In agreement with recent findings for surface record-
ings [26], our findings show that denser arrays allow better
spatial sampling, which improves the identification of MUs,
especially at higher force levels. The number of motor units
plateaued at 10% and 30 %MVC in S1 (Fig. 6), but continued

to rise at 70 %MVC. A similar trend was observed in S2. This
suggests that increasing the density of recording points could
be particularly advantageous for decomposing data acquired
at higher force levels.

As shown in Figure 8, the number of channels, rather
than their specific placement within the muscle, was the
primary factor influencing the yield of decomposed motor
units. Additionally, Figure 9 supports the claim that decom-
position accuracy improves with increased channel count,
as evidenced by consistent SIL trends across all electrodes and
both subjects, with the exception of the first electrode in S1.
This electrode deviated from the overall trend also in the motor
unit yield. Indeed, unlike the other electrodes, it produced
fewer decomposed motor units overall, which likely explains
the differing SIL trend observed (Fig. 8).

The number of common surface/intramuscular units across
modalities was very small, which can be attributed to the
different regions of the muscle recorded with the surface and
intramuscular electrodes. Additionally, the number of common
units across intramuscular arrays was also low, except for S2 at
30 %MVC. The limited overlap of units across intramuscular
electrodes is likely attributable to the high spatial selectivity
of intramuscular recordings, which inherently reduces the
likelihood of sampling the same muscle fibers from different
electrode insertions. The higher number of common units for
S2 at 30 %MVC may explain the slightly lower overall number
of motor units found for S2 (refer to Table I). In the future,
the ability to re-target electrodes after identifying common
motor units across electrodes could facilitate the recording
of unique MUs, thereby expanding the pool of identified
motor units by multiple arrays. The TA comprises roughly
445 motor units [30]. Given the limited overlap of motor
units identified between HD-sEMG and HD-iEMG (as well
as among different intramuscular electrodes), combining data
from both modalities could significantly expand the pool of
motor neurons detected, allowing for a more comprehensive
estimate of the neural drive to the muscles.

Future technologies should consider leveraging the advan-
tages of HD-iEMG for studying the neuromechanics of
movement and for neural interfacing. The greater consistency
in results, along with the higher number of decomposed motor
units and improved decomposition accuracy with respect to
HD-sEMG, make HD-iEMG a promising tool for this research.
Further advancements in intramuscular technologies could
benefit from increasing both the number and the density of
channels within the array. While our focus in this study was
on a large muscle like the TA, which provides access to
a large pool of motor units, further studies are necessary
to determine whether these findings extend to muscles with
different anatomical characteristics, such as differences in
muscle size, fiber pinnation angles, and distribution of end-
of-fiber regions.
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